Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

نویسندگان

  • Varrla Eswaraiah
  • Venkataraman Sankaranarayanan
  • Sundara Ramaprabhu
چکیده

Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites

Three types of single-walled carbon nanotube (SWCNT) homogeneous epoxy composites with different SWCNT loadings (0.01–15%) have been evaluated for electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band range (8.2–12.4 GHz). The effect of the SWCNT structure including both the SWCNT aspect ratio and wall integrity, on the EMI SE have been studied and are found to correlate...

متن کامل

Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency

Abstract—This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular waveguide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex p...

متن کامل

Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites.

Single-walled carbon nanotube (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) of SWNTs. Our results indicate that SWNTs can be used as effective lightweight EMI shielding materials. Composites with greater than 20 dB shielding efficiency were obtained easily. EMI SE was tested in the frequency range of 10 MHz to 1.5 ...

متن کامل

Effects of particle size and weight percentage of heavy metal elements on photon shielding efficiency of reinforced polymer composites

Background: Polymer composites when reinforced with heavy metals in the form of micro/nano particles are efficient gamma- and X-ray shielding materials providing such advantageous features as cost-effectiveness, light-weight factor, flexibility, non-toxicity, conformability over conventional shields. Materials and Methods: In this paper the influence of weight percentages and particle sizes of ...

متن کامل

Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials.

Electroactive materials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidene fluoride), PVDF, have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011